Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

Static Optimization is a method for estimating muscle activations and muscle forces that satisfy the positions, velocities, accelerations, and external forces (e.g., ground reaction forces) of a motion. The technique is called  "static" since calculations are performed at each time frame, without integrating the equations of motion between time steps. Because there is no integration, Static Optimization can be very fast and efficient, but it does ignore activation dynamics and tendon compliance. (See Hicks et al., (2015) for more details regarding this and similar modeling and simulation choices and their pros and cons.)  

...

What exactly is happening? This error message, "Optimizer Failed..." is informing you that the optimizer could not find an adequate solution at the time indicated. Remember that Static Optimization is trying to calculate activations and muscle forces that satisfy the model's coordinate accelerations calculated from the specified kinematics file. If the model's actuators cannot generate sufficient forces to match the these accelerations, this "Optimizer Failed..." error will appear. The Static Optimization tool has produced a set of results to help with troubleshooting, but these outputs are not valid.

An under-actuated model is the product of either muscles not being strong enough to generate the required forces and/or model coordinates not having any actuation whatsoever (muscles or other actuators). In this particular model, there are no muscles that control lumbar flexion/extension and so all the other lower limb muscles are trying to control trunk motion, without much success. 

You could One possible solution is to add extra muscles that cross the lumbar joint, . However in this series of studies we are only interested in Gastrocnemius activation during walking. Adding additional muscles will add extra complexity to the model that is likely not required for our analysis. Instead of lumbar muscles, we will add a torque actuator at the lumbar joint.

We will also add reserve and residual actuators to the model. Reserve actuators can add extra actuation during portions of the gait cycle where muscles are not able to generate sufficient accelerations (e.g., during a spike in acceleration). Residual actuators are "hand of God" forces that account for (what should be small) discrepancies between the model, measured motions, and forces, ensuring the ; in other words, these actuators ensure that Newton's 2nd law, F=ma, is satisfied throughout the analysis. For more details, see section 3.1.3 of Hicks et el., (2015).

...