Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

Team Members

  • Dani Mendoza
  • Gaby Uribe

Project Video


Project Files


Background

In the field of biomechanics, understanding the intricate mechanisms involved in human locomotion has long been a subject of interest. One fundamental aspect of this research is investigating how muscle activations vary between different walking conditions. In particular, this project looks to explore the disparities in muscle activation patterns during unloaded and loaded walking. This investigation aims to shed light on the adaptations that occur in the neuromuscular system when individuals carry external loads while walking over a flat surface. To achieve this, our project employs static optimization code, a powerful computational tool that utilizes mathematical optimization algorithms to estimate muscle forces and activations based on experimental motion data. By comparing muscle activations between unloaded and loaded walking using this approach, we hope to gain valuable insights into the motor control strategies employed by the human body in response to varying loads. Such knowledge may have implications in areas such as rehabilitation, sport performance, and ergonomics, potentially leading to the development of improved training techniques and interventions to enhance human locomotion under different loading conditions.

Research Question(s)

How do differences in ankle, hip, and knee kinematics cause changes in muscle activation patterns during loaded vs unloaded level walking? 

Methods


Results


Limitations

...