Join members of the OpenSim Team on Wednesday July 26th for an introduction to OpenSim and new tools for rapidly developing musculoskeletal simulations.
...
- Open the Anaconda Prompt (or, Powershell on Windows, Terminal on Mac, etc).
- This assumes you have installed Anaconda already (see above TODO link)
Create environment (python 3.9 recommended)
Code Block C:\> conda create -n opencap-processing python=3.9
Activate environment
Code Block C:\> conda activate opencap-processing
Install OpenSim
Code Block C:\> conda install -c opensim-org opensim=4.4=py39np120
(Optional): Install an IDE such as Spyder
Code Block C:\> conda install spyder
- Clone/download the repository to your machine
- Using Git
Navigate to the directory where you want to download the code. For example:
Code Block C:\> cd Documents
Clone the repository
Code Block C:\Documents> git clone https://github.com/stanfordnmbl/opencap-processing.git
- Without using Git
- Download the repository by visiting https://github.com/stanfordnmbl/opencap-processing/archive/refs/heads/main.zip
- Unzip the folder
- We will assume your PATH looks like C:\Documents\opencap-processing and that the path to the README file is C:\Documents\opencap-processing\README.md
- Using Git
- Install required Python packages
Navigate to the directory (make sure you are in Documents)
Code Block C:\Documents> cd opencap-processing
Install packages
Code Block C:\Documents\opencap-processing> python -m pip install -r requirements.txt
Create environment variable for authentication, you will be prompted to provide your OpenCap credentials. An environment variable (
.env
file) will be saved after authenticating.Code Block C:\Documents\opencap-processing> python createAuthenticationEnvFile.py
Run example to verify that everything was correctly installed so far. If you get some plots popping out, then you can proceed to step 10.
Code Block C:\Documents\opencap-processing> python example.pycreateAuthenticationEnvFile.py
If you're a Mac user, you can stop here. If you're on Windows or Linux, you will need this extra step. This part of the workshop will involve running dynamic simulations of walking using OpenSimAD, which is a custom version of OpenSim with support for Automatic Differentiation (AD).
ss
s
https://github.com/stanfordnmbl/opencap-processing#install-requirements
...
Visit the Moco website here.
Slides
TODO
Publications
Uhlrich SD, Falisse A, Kidzinski L, Muccini J, Ko M, Chaudhari AS, Hicks JL, Delp SL (2022) OpenCap: 3D human movement dynamics from smartphone videos. bioRxiv. https://doi.org/10.1101/2022.07.07.499061
View file name 2022.07.07.499061v1.full.pdf height 250
Werling K, Bianco NA, Raitor M, Stingel J, Hicks JL, Collins SH, Delp SL, Liu CK (2023) AddBiomechanics: Automating model scaling, inverse kinematics, and inverse dynamics from human motion data through sequential optimization. bioRxiv. https://doi.org/10.1101/2023.06.15.545116
View file | ||||
---|---|---|---|---|
|
Dembia CL, Bianco NA, Falisse A, Hicks JL, Delp SL (2020) OpenSim Moco: Musculoskeletal optimal control. PLoS Comput Biol 16(12): e1008493. https://doi.org/10.1371/journal.pcbi.1008493
View file | ||||
---|---|---|---|---|
|
...