Team Members
- Jaehyun Bae
Motivation
...
Best realistic actuation input force for ankle actuator
As the optimal input force for ankle actuator is not achievable, I tried to find a realistic ankle actuator force which has its maximum force of 400N. My initial guess was to saturate the optimal input force that I found earlier at 400N. Therefore, I cut the optimal input force at 400N, and create new input force. I added this force profile to CMC tool as a control constraints, and run CMC again.
I compared the saturated optimal input to a new CMC results which was acquired with 4000N maximum actuation force and bounded control input between 0 and .1. The new CMC results also has maximum force of 400N as the control input is bounded, and it gives better input force in terms of metabolic cost reduction than a result of CMC which was acquired with an actuator with 400N actuation and conventional control input.
In these graphs, you can see a similaritly between the saturated optimal input and a results of new CMC procedure.
Loaded walking | Unloaded walking |
---|---|
...
Discussion
ModelBiarticular actuator
Now that we know both ankle actuator hip actuator works well to reduce metabolic cost during loaded walking, the natural progress is to create biarticular actuator which can affect both ankle plantar flexion and hip extension. In order to reduce the number of actuator, I created biarticular actuator with 1 DOF, and see how much it reduces metabolic cost, and what it’s optimal input force is.
Simulation result
Loaded walking- rate of metabolic reduction
Control input is noisy, which makes it hard to realize
Biarticular actuator is not as effective as uni-articular actuators in terms of metabolic cost reduction.
Conclusion
Featured result
...