...
Optimal input force when actuation force is limited to 400N
- From the previous results, we found that the optimal force for hip actuator is small enough to be achieved by real actuator, while the optimal input force for ankle actuator is not realistic. (>2000N). Therefore, I tried different types of input forces for ankle actuators up to 400N, and compare the results to optimal control input case.
- My initial guess was to saturate the optimal input force that I found earlier at 400N. I generated an new input force which is identical to optimal input force up to 400N, and saturated once optimal input force exceeds 400N. And then, I run CMC after setting the actuator input forces as a control constraints for each case.
- The second input force I tried is a new result from different CMC procedure. The new CMC result was acquired after assigning 4000N to maximum actuation force and bounding control input between 0 and 0.1.
In other word,
According to the formula Factuator = Factuatormax * Xactuator, the new CMC results also has maximum force of 400N. As Xactuator is bounded between 0 and 0.1 and Xmuscle has a range of 0 and 1, the influence of Xactuator to objective function of CMC procedure is relatively lower than that of Xmuscle , so we can use this idea to create optimal input for active actuator when the maximum actuation force is limited.
It When we compare the saturated optimal input and the result from new type of CMC procedure, we can find a similarity between the saturated optimal input and a results of new CMC procedure. Now, let's compare the metabolic cost reduction when each control input is applied to ankle actuators.
...