How Static Optimization Works

How Static Optimization Works

As described in Inverse Dynamics, the motion of the model is completely defined by the generalized positions, velocities, and accelerations. The Static Optimization Tool uses the known motion of the model to solve the equations of motion for the unknown generalized forces (e.g., joint torques) subject to one of the following muscle activation-to-force conditions:

ideal force generators:

Loading

or, constrained by force-length-velocity properties:

Loading

while minimizing the objective function:

Loading

where n is the number of muscles in the model; am is the activation level of muscle at a discrete time step; 

Loading
 is its maximum isometric force; lm is its length; vis its shortening velocity; 
Loading
 is its force-length-velocity surface; rm,j is its moment arm about the jthjoint axis; 
Loading
 is the generalized force acting about the jth joint axis; and is a user defined constant. Note that for static optimization
Loading
 computes the active fiber force along the tendon assuming an inextensible tendon and does not include contribution from muscles' parallel elastic element.

 

OpenSim is supported by the Mobilize Center , an NIH Biomedical Technology Resource Center (grant P41 EB027060); the Restore Center , an NIH-funded Medical Rehabilitation Research Resource Network Center (grant P2C HD101913); and the Wu Tsai Human Performance Alliance through the Joe and Clara Tsai Foundation. See the People page for a list of the many people who have contributed to the OpenSim project over the years. ©2010-2024 OpenSim. All rights reserved.